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Abstract 
Transportation with electrified vehicles can reduce global dependence on fossil fuels and reduce the emission of 
green house gases. Recent developments have been focused on the development of electric vehicles, hybrid 
electric vehicles and fuel cell vehicles. However, the commercial deployment of electric vehicles has lagged 
behind due to technological issues in associated with the battery including: price, weight, volume, driving 
distance, and limited investment in charging infrastructure. Shaped magnetic field in resonance (SMFIR) 
technology enables electric vehicles to overcome these limitations by transferring electricity wirelessly from the 
road surface while vehicle is in motion. This work describes the innovative SMFIR technology used in the KAIST 
online electric vehicle (OLEV) project as well as its impact on the future of urban transportation. The system 
integration of the power supply into the OLEV and the vehicle system architecture is also discussed. 
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1 INTRODUCTION 

Most electric vehicles (EVs) get the electric energy 
needed for operation from on-board storage devices (i.e. 
batteries). However, current battery technology provides 
a very limited travel range with high costs, long charging 
times, and lower operating efficiencies due to battery 
weight. These issues must be addressed in order to 
increase adoption of EVs in both public and personal 
transportation.  

KAIST has been challenging the technological limitations 
imposed by electric vehicle batteries by developing 
wireless power transmission technology that allows 
electric vehicles to charge during operation. This 
technology limits the need for remote static charging 
stations and replaces them with charging infrastructure 
embedded in the road or highway system. From a 
technical perspective, this strategy enables the designer 
to transform design constraints into design variables. 
This not only allows for the development of EVs with 
substantially smaller and lighter batteries, but also gives 
engineers greater freedom in designing the charging 
infrastructure and the on-board energy storage devices. It 
also allows the EV power management system to be 
more closely integrated with the electric power train. 
From a business perspective, this increases vehicle 
performance, user satisfaction, and business 
competitiveness, all while protecting the environment.  

In this paper, we introduce an overview of the shaped 
magnetic field in resonance (SMFIR) technology that was 
developed as part of the KAIST online electric vehicle 
(OLEV) project. SMFIR is a technological innovation in 
wireless power transmission capacity and efficiency 
under dynamic operation. The design parameters and 
process of the dynamic charging infrastructure are 
introduced, starting with the required electric power, 
required wireless power transmission and the design 
considerations within the vehicle of the OLEV system. 

2 BACKGROUND 

2.1 Internal Combustion Engine (ICE) age to green 
transportation 

The world is facing a tough challenge in the perspective 
of climate change and the global energy supply, mainly 
caused by a heavy dependence on fossil fuels. In 2007, 
the United Nations Framework Convention on Climate 
Change (UNFCCC) took initiatives on providing 
authoritative, timely information on all aspects of 
technologies and socio-economic policies, including cost-
effective measures to control greenhouse gas (GHG) 
emissions [1]. 

While there have been active debates with mixed 
opinions on the global petroleum production forecast, the 
U.S. Energy Information Administration (EIA) scenario, 
published in 2002, shows that peak oil production will be 
reached within a couple of decades, as depicted in 
Figure 1. The EIA applied a growth rate of 1-3% in the 
petroleum production profile with the assumption of 
R/P=10, which means that the amount of known 
resources (proven reserves) has 10 years of annual 
production at the current rate of production to create the 
three curves in Figure 1. The peak annual global 
production of petroleum will be at its peak between 2030 
and 2050 [2]. 
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